Add like
Add dislike
Add to saved papers

High yield production of Rhizobium NodB chitin deacetylase and its use for in vitro synthesis of lipo-chitinoligosaccharide precursors.

Carbohydrate Research 2017 April 11
Lipo-chitinoligosaccharides (LCOs) are key molecules for the establishment of plant-microorganisms symbiosis. Interactions of leguminous crops with nitrogen-fixing rhizobial bacteria involve Nod factors, while Myc-LCOs improve the association of most plants with arbuscular mycorrhizal fungi. Both Nod factors and Myc-LCOs are composed of a chitinoligosaccharide fatty acylated at the non-reducing end accompanied with various substituting groups. One straightforward way to access LCOs is starting from chitin hydrolysate, an abundant polysaccharide found in crustacean shells, followed by regioselective enzymatic cleavage of an acetyl group from the non-reducing end of chitin tetra- or pentaose, and subsequent chemical introduction of N-acyl group. In the present work, we describe the in vitro synthesis of LCO precursors on preparative scale. To this end, Sinorhizobium meliloti chitin deacetylase NodB was produced in high yield in E. coli as a thioredoxin fusion protein. The recombinant enzyme was expressed in soluble and catalytically active form and used as an efficient biocatalyst for N-deacetylation of chitin tetra- and pentaose.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app