Add like
Add dislike
Add to saved papers

Leishmania donovani chaperonin 10 regulates parasite internalization and intracellular survival in human macrophages.

Protozoa of the genus Leishmania infect macrophages in their mammalian hosts causing a spectrum of diseases known as the leishmaniases. The search for leishmania effectors that support macrophage infection is a focus of significant interest. One such candidate is leishmania chaperonin 10 (CPN10) which is secreted in exosomes and may have immunosuppressive properties. Here, we report for the first time that leishmania CPN10 localizes to the cytosol of infected macrophages. Next, we generated two genetically modified strains of Leishmania donovani (Ld): one strain overexpressing CPN10 (CPN10+++) and the second, a CPN10 single allele knockdown (CPN10+/-), as the null mutant was lethal. When compared with the wild-type (WT) parental strain, CPN10+/- Ld showed higher infection rates and parasite loads in human macrophages after 24 h of infection. Conversely, CPN10+++ Ld was associated with lower initial infection rates. This unexpected apparent gain-of-function for the knockdown could have been explained either by enhanced parasite internalization or by enhanced intracellular survival. Paradoxically, we found that CPN10+/- leishmania were more readily internalized than WT Ld, but also displayed significantly impaired intracellular survival. This suggests that leishmania CPN10 negatively regulates the rate of parasite uptake by macrophages while being required for intracellular survival. Finally, quantitative proteomics identified an array of leishmania proteins whose expression was positively regulated by CPN10. In contrast, many macrophage proteins involved in innate immunity were negatively regulated by CPN10. Taken together, these findings identify leishmania CPN10 as a novel effector with broad based effects on macrophage cell regulation and parasite survival.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app