Journal Article
Review
Add like
Add dislike
Add to saved papers

The immunological function of CD52 and its targeting in organ transplantation.

INTRODUCTION: CD52 (Campath-1 antigen), a glycoprotein of 12 amino acids anchored to glycosylphosphatidylinositol, is widely expressed on the cell surface of immune cells, such as mature lymphocytes, natural killer cells (NK), eosinophils, neutrophils, monocytes/macrophages, and dendritic cells (DCs). The anti-CD52 mAb, alemtuzumab, was used widely in clinics for the treatment of patients such as organ transplantation. In the present manuscript, we will briefly summarize the immunological function of CD52 and discuss the application of anti-CD52 mAb in transplantation settings.

FINDINGS: We reviewed studies published until July 2016 to explore the role of CD52 in immune cell function and its implication in organ transplantation. We showed that ligation of cell surface CD52 molecules may offer costimulatory signals for T-cell activation and proliferation. However, soluble CD52 molecules will interact with the inhibitory sialic acid-binding immunoglobulin-like lectin 10 (Siglec10) to significantly inhibit T cell proliferation and activation. Although the physiological and pathological significances of CD52 molecules are still poorly understood, the anti-CD52 mAb, alemtuzumab, was used widely for the treatment of patients with chronic lymphocytic leukemia, autoimmune diseases as well as cell and organ transplantation in clinics.

CONCLUSION: Studies clearly showed that CD52 can modulate T-cell activation either by its intracellular signal pathways or by the interaction of soluble CD52 and Siglec-10 expressing on T cells. However, the regulatory functions of CD52 on other immune cell subpopulations in organ transplantation require to be studied in the near future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app