Add like
Add dislike
Add to saved papers

Lower concentrations of receptor for advanced glycation end products and epiregulin in amniotic fluid correlate to chemically induced cleft palate in mice.

This study investigated the correlation between differentially expressed proteins in amniotic fluid (AF) and cleft palate induced by all-trans retinoic acid (atRA), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice. Seven proteins were differentially expressed at embryonic day (E) 16.5 in atRA and control groups as revealed by label-based mouse antibody array. Enzyme-linked immunosorbent assay was further used to detect the expression levels of these proteins in AF from E13.5 to E16.5 in atRA, TCDD, and control groups. The cleft palate groups showed lower concentrations of receptor for advanced glycation end products (RAGE) and epiregulin at E16.5. RAGE immunostaining obviously decreased in palatal tissue sections obtained from E14.5 to E16.5 in the cleft palate groups as revealed by immunohistochemistry. These findings indicate that reduced levels of RAGE and epiregulin in AF are correlated to chemically induced cleft palate in mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app