Add like
Add dislike
Add to saved papers

Unconventional Surface Critical Behavior Induced by a Quantum Phase Transition from the Two-Dimensional Affleck-Kennedy-Lieb-Tasaki Phase to a Néel-Ordered Phase.

Physical Review Letters 2017 Februrary 25
A symmetry-protected topological phase has nontrivial surface states in the presence of certain symmetries, which can either be gapless or be degenerate. In this work, we study the physical consequence of such gapless surface states at the bulk quantum phase transition (QPT) that spontaneously breaks these symmetries. The two-dimensional Affleck-Kennedy-Lieb-Tasaki phase on a square lattice and its QPTs to Néel ordered phases are realized with the spin-1/2 Heisenberg model on a decorated square lattice. With large-scale quantum Monte Carlo simulations, we show that even though the bulk QPTs are governed by the conventional Landau phase transition theory, the gapless surface states induce unconventional universality classes of the surface critical behavior.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app