Add like
Add dislike
Add to saved papers

Space-Time Vortex Driven Crossover and Vortex Turbulence Phase Transition in One-Dimensional Driven Open Condensates.

Physical Review Letters 2017 Februrary 25
We find a first-order transition driven by the strength of nonequilibrium conditions of one-dimensional driven open condensates. Associated with this transition is a new stable nonequilibrium phase, space-time vortex turbulence, whose vortex density and quasiparticle distribution show strongly nonthermal behavior. Below the transition, we identify a new time scale associated with noise-activated unbound space-time vortices, beyond which, the temporal coherence function changes from a Kardar-Parisi-Zhang-type subexponential to a disordered exponential decay. Experimental realization of the nonequilibrium vortex turbulent phase is facilitated in driven open condensates with a large diffusion rate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app