JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Targeted Ultrasound-Triggered Phase Transition Nanodroplets for Her2-Overexpressing Breast Cancer Diagnosis and Gene Transfection.

For successful gene therapy, it is imperative to accumulate therapeutic gene in tumor tissues followed by efficiently delivering gene into targeted cells. Ultrasound irradiation, as a noninvasive and cost-effective external stimulus, has been proved to be one of the most potential external-stimulating gene delivery strategies recently in further improving gene transfection. In this study, we developed tumor-targeting ultrasound-triggered phase-transition nanodroplets AHNP-PFP-TNDs comprising a perfluorinated poly(amino acid) C11 F17 -PAsp (DET) as a core for simultaneously loading perfluoropentane (PFP) and nucleic acids, and a polyanionic polymer PGA-g-PEG-AHNP as the shell for not only modifying the surface of nanodroplets but also introducing an anti-Her2/neu peptide (AHNP) aiming to targeted treatment of Her2-overexpressing breast cancer. The results showed the average diameter of AHNP-PFP-TNDs was below 400 nm, nearly spherical in shape. The modification of PGA-g-PEG-AHNP not only increased the serum stability of the nanodroplets but also improved the affinity between nanodroplets and Her2-overexpressing breast cells. Both intratumor and intravenous injection of AHNP-PFP-TNDs into nude mice bearing HGC-27 xenografts showed that the gene transfection efficiency and the ultrasound contrast effect were significantly enhanced after exposed to the ultrasound irradiation with optimized ultrasound parameters. Therefore, this targeting nanodroplets system could be served as a potential theranostic vector for tumor targeting ultrasound diagnosis and gene therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app