Add like
Add dislike
Add to saved papers

Dietary fat proportionately enhances oxidative stress and glucose intolerance followed by impaired expression of the genes associated with mitochondrial biogenesis.

Food & Function 2017 April 20
Consumption of food that surpasses the metabolic necessity of the body leads to an epidemic condition termed obesity, which causes several metabolic disorders including oxidative damage. Dietary intervention can enlighten the mechanisms and therapeutics associated with these metabolic disorders. The reported studies related to diet include fat of different kinds and from different sources, however they lack dose response aspects. Our study highlighted the importance of dietary fat modification in modulating oxidative stress-induced glucose intolerance. Animals were maintained on a diet with a varied content of fat (30%/45%/60%) for 12 weeks and the 'withdrawal' group was fed a standard diet for another 10 weeks. The diet containing 60 energy% of fat displayed glucose intolerance, high ALT, low GSH levels and tissue-specific modulation of the prooxidant/antioxidant enzymatic activities in the liver/muscles. Prolonged sustenance of the 60 energy% fat containing diet-fed rats on standard diet led to the alteration of antioxidant activities, reversing the oxidative damage. Notably, the 'withdrawal' group displayed an organ-specific response towards dietary modification where the recovery of the antioxidant activities was observed to be much more pronounced in the liver as compared to the muscle. Further, we identified the differential expression of liver/muscle-specific genes associated with oxidative stress and mitochondrial biogenesis in response to the differing fat content. These genes can serve as markers for HFD-induced metabolic complications involving the liver/muscle. Altogether, our study has highlighted the novel area where obesity-induced oxidative stress linked alterations expressed diet and organ specific responses that are recovered by altering the dietary regimen. Future investigation of dietary modulation will open nascent avenues for developing therapeutic modalities addressing obesity-related metabolic complications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app