Add like
Add dislike
Add to saved papers

Potential Role of CD133 Expression in the Susceptibility of Human Liver Cancer Stem-Like Cells to TRAIL.

Oncology Research 2016 October 28
Hepatocellular carcinoma (HCC) is one of the most common malignancies, with a poor prognosis and high recurrence rate. In the present study, we identified CD133, one of the markers of cancer stem cells, as a novel molecular target of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). In four human HCC cell lines established from primary HCC tumors, we found that CD133-high human liver cancer stem-like cells (CD133hi) derived from the SNU-475 cell line were highly susceptible to TRAIL compared to other HCC cell lines with a small population of CD133. CD133hi SNU-475 cells showed upregulation of TRAIL receptor DR5 and stemness-related genes such as c-Myc and ABC transporters compared to their CD133-low (CD133lo) cells. Hypersensitivity of CD133hi cells to TRAIL was associated with c-Myc-mediated upregulation of DR5 and downregulation of c-FLIPL in the cells. Knockdown of CD133 expression in CD133hi cells resulted in the downregulation of c-Myc, and depletion of c-Myc caused a decrease in the cell surface expression of DR5 and an increase in the expression of c-FLIPL and, consequently, attenuated TRAIL-induced cytotoxicity and apoptosis of CD133hi cells. These results suggest that TRAIL may provide a new strategy for CD133hi CSCs of HCC-targeted therapies and, potentially, for therapies of other CD133-expressing types of cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app