Add like
Add dislike
Add to saved papers

Formation of Low-Volatility Organic Compounds in the Atmosphere: Recent Advancements and Insights.

Secondary organic aerosol (SOA) formation proceeds by bimolecular gas-phase oxidation reactions generating species that are sufficiently low in volatility to partition into the condensed phase. Advances in instrumentation have revealed that atmospheric SOA is less volatile and more oxidized than can be explained solely by these well-studied gas-phase oxidation pathways, supporting the role of additional chemical processes. These processes-autoxidation, accretion, and organic salt formation-can lead to exceedingly low-volatility species that recently have been identified in laboratory and field studies. Despite these new insights, the identities of the condensing species at the molecular level and the relative importance of the various formation processes remain poorly constrained. The thermodynamics of autoxidation, accretion, and organic salt formation can be described by equilibrium partitioning theory; a framework for which is presented here. This framework will facilitate the inclusion of such processes in model representations of SOA formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app