Add like
Add dislike
Add to saved papers

Extracting the Shape and Size of Biomolecules Attached to a Surface as Suspended Discrete Nanoparticles.

Analytical Chemistry 2017 March 23
The ability to derive information on the conformation of surface attached biomolecules by using simple techniques such as biosensors is currently considered of great importance in the fields of surface science and nanotechnology. Here we present a nanoshape sensitive biosensor where a simple mathematical expression is used to relate acoustic measurements to the geometrical features of a surface-attached biomolecule. The underlying scientific principle is that the acoustic ratio (ΔD/ΔF) is a measure of the hydrodynamic volume of the attached entity, mathematically expressed by its intrinsic viscosity [η]. A methodology is presented in order to produce surfaces with discretely bound biomolecules where their native conformation is maintained. Using DNA anchors we attached a spherical protein (streptavidin) and a rod-shaped DNA (47bp) to a quartz crystal microbalance (QCM) device in a suspended way and predicted correctly through acoustic measurements their conformation, i.e., shape and length. The methodology can be widely applied to draw conclusions on the conformation of any biomolecule or nanoentity upon specific binding on the surface of an acoustic wave device.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app