Add like
Add dislike
Add to saved papers

ZntR positively regulates T6SS4 expression in Yersinia pseudotuberculosis.

The type VI secretion system (T6SS) is a widespread and versatile protein secretion system found in most Gram-negative bacteria. Studies of T6SS have mainly focused on its role in virulence toward host cells and inter-bacterial interactions, but studies have also shown that T6SS4 in Yersinia pseudotuberculosis participates in the acquisition of zinc ions to alleviate the accumulation of hydroxyl radicals induced by multiple stressors. Here, by comparing the gene expression patterns of wild-type and zntR mutant Y. pseudotuberculosis cells using RNA-seq analysis, T6SS4 and 17 other biological processes were found to be regulated by ZntR. T6SS4 was positively regulated by ZntR in Y. pseudotuberculosis, and further investigation demonstrated that ZntR regulates T6SS4 by directly binding to its promoter region. T6SS4 expression is regulated by zinc via ZntR, which maintains intracellular zinc homeostasis and controls the concentration of reactive oxygen species to prevent bacterial death under oxidative stress. This study provides new insights into the regulation of T6SS4 by a zinc-dependent transcriptional regulator, and it provides a foundation for further investigation of the mechanism of zinc transport by T6SS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app