Add like
Add dislike
Add to saved papers

Use of site symmetry in supercell models of defective crystals: polarons in CeO 2 .

In supercell calculations of defective crystals, it is common to place a point defect or vacancy in the atomic position with the highest possible point symmetry. Then, the initial atomic structure is often arbitrary distorted before its optimization, which searches for the total energy minimum. In this paper, we suggest an alternative approach to the application of supercell models and show that it is necessary to preliminarily analyze the site symmetry of the split Wyckoff positions of the perfect crystal supercell atoms (which will be substituted or removed in defective crystals) and then perform supercell calculations with point defects for different possible site symmetries, to find the energetically most favorable defect configuration, which does not necessarily correspond to the highest site symmetry. Using CeO2 as an example, it is demonstrated that this use of the site symmetry of the removed oxygen atoms in the supercells with vacancies allows us to obtain all the possible atomic and magnetic polaron configurations, and predict which vacancy positions correspond to the lowest formation energies associated with small polarons. We give a simple symmetry based explanation for the existence of controversies in the literature on the nature of the oxygen vacancies in CeO2 . In particular, the experimentally observed small polaron formation could arise for oxygen vacancies with the lowest Cs site symmetry, which exist in 3 × 3 × 3 and larger supercells. The results of first principles calculations using a linear combination of atomic orbitals and hybrid exchange-correlation functionals are compared with those from previous studies, obtained using a widely used DFT+U approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app