Add like
Add dislike
Add to saved papers

Methylation of avpr1a in the cortex of wild prairie voles: effects of CpG position and polymorphism.

DNA methylation can cause stable changes in neuronal gene expression, but we know little about its role in individual differences in the wild. In this study, we focus on the vasopressin 1a receptor (avpr1a), a gene extensively implicated in vertebrate social behaviour, and explore natural variation in DNA methylation, genetic polymorphism and neuronal gene expression among 30 wild prairie voles (Microtus ochrogaster). Examination of CpG density across 8 kb of the locus revealed two distinct CpG islands overlapping promoter and first exon, characterized by few CpG polymorphisms. We used a targeted bisulfite sequencing approach to measure DNA methylation across approximately 3 kb of avpr1a in the retrosplenial cortex, a brain region implicated in male space use and sexual fidelity. We find dramatic variation in methylation across the avrp1a locus, with pronounced diversity near the exon-intron boundary and in a genetically variable putative enhancer within the intron. Among our wild voles, differences in cortical avpr1a expression correlate with DNA methylation in this putative enhancer, but not with the methylation status of the promoter. We also find an unusually high number of polymorphic CpG sites (polyCpGs) in this focal enhancer. One polyCpG within this enhancer (polyCpG 2170) may drive variation in expression either by disrupting transcription factor binding motifs or by changing local DNA methylation and chromatin silencing. Our results contradict some assumptions made within behavioural epigenetics, but are remarkably concordant with genome-wide studies of gene regulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app