Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Detection of an invisible needle in ultrasound using a probabilistic SVM and time-domain features.

Ultrasonics 2017 July
We propose a novel learning-based approach to detect an imperceptible hand-held needle in ultrasound images using the natural tremor motion. The minute tremor induced on the needle however is also transferred to the tissue in contact with the needle, making the accurate needle detection a challenging task. The proposed learning-based framework is based on temporal analysis of the phase variations of pixels to classify them according to the motion characteristics. In addition to the classification, we also obtain a probability map of the segmented pixels by cross-validation. A Hough transform is then used on the probability map to localize the needle using the segmented needle and posterior probability estimate. The two-step probability-weighted localization on the segmented needle in a learning framework is the key innovation which results in localization improvement and adaptability to specific clinical applications. The method was tested in vivo for a standard 17 gauge needle inserted at 50-80° insertion angles and 40-60mm depths. The results showed an average accuracy of (2.12°, 1.69mm) and 81%±4% for localization and classification, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app