Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Unsuppressible Repetition Suppression and exemplar-specific Expectation Suppression in the Fusiform Face Area.

Scientific Reports 2017 March 14
Recent work casts Repetition Suppression (RS), i.e. the reduced neural response to repeated stimuli, as the consequence of reduced surprise for repeated inputs. This research, along with other studies documenting Expectation Suppression, i.e. reduced responses to expected stimuli, emphasizes the role of expectations and predictive codes in perception. Here, we use fMRI to further characterize the nature of predictive signals in the human brain. Prior to scanning, participants were implicitly exposed to associations within face pairs. Critically, we found that this resulted in exemplar-specific Expectation Suppression in the fusiform face-sensitive area (FFA): individual faces that could be predicted from the associations elicited reduced FFA responses, as compared to unpredictable faces. Thus, predictive signals in the FFA are specific to face exemplars, and not only generic to the category of face stimuli. In addition, we show that under such circumstances, the occurrence of surprising repetitions did not trigger enhanced brain responses, as had been recently hypothesized, but still suppressed responses, suggesting that repetition suppression might be partly 'unsuppressible'. Repetition effects cannot be fully modulated by expectations, which supports the recent view that expectation and repetition effects rest on partially independent mechanisms. Altogether, our study sheds light on the nature of expectation signals along the perceptual system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app