Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Surfactant-Modified Ultrafine Gold Nanoparticles with Magnetic Responsiveness for Reversible Convergence and Release of Biomacromolecules.

It is difficult to synthesize magnetic gold nanoparticles (AuNPs) with ultrafine sizes (<2 nm) based on a conventional method via coating AuNPs using magnetic particles, compounds, or ions. Here, magnetic cationic surfactants C16 H33 N+ (CH3 )3 [CeCl3 Br]- (CTACe) and C16 H33 N+ (CH3 )3 [GdCl3 Br]- (CTAGd) are prepared by a one-step coordination reaction, i.e., C16 H33 N+ (CH3 )3 Br- (CTABr) + CeCl3 or GdCl3 → CTACe or CTAGd. A simple strategy for fabricate ultrafine (<2 nm) magnetic gold nanoparticles (AuNPs) via surface modification with weak oxidizing paramagnetic cationic surfactants, CTACe or CTAGd, is developed. The resulting AuNPs can highly concentrate the charges of cationic surfactants on their surfaces, thereby presenting strong electrostatic interaction with negatively charged biomacromolecules, DNA, and proteins. As a consequence, they can converge DNA and proteins over 90% at a lower dosage than magnetic surfactants or existing magnetic AuNPs. The surface modification with these cationic surfactants endows AuNPs with strong magnetism, which allows them to magnetize and migrate the attached biomacromolecules with a much higher efficiency. The native conformation of DNA and proteins can be protected during the migration. Besides, the captured DNA and proteins could be released after adding sufficient inorganic salts such as at cNaBr = 50 mmol·L-1 . Our results could offer new guidance for a diverse range of systems including gene delivery, DNA transfection, and protein delivery and separation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app