JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

In-Situ Formed Type I Nanocrystalline Perovskite Film for Highly Efficient Light-Emitting Diode.

ACS Nano 2017 March 29
Excellent color purity with a tunable band gap renders organic-inorganic halide perovskite highly capable of performing as light-emitting diodes (LEDs). Perovskite nanocrystals show a photoluminescence quantum yield exceeding 90%, which, however, decreases to lower than 20% upon formation of a thin film. The limited photoluminescence quantum yield of a perovskite thin film has been a formidable obstacle for development of highly efficient perovskite LEDs. Here, we report a method for highly luminescent MAPbBr3 (MA = CH3 NH3 ) nanocrystals formed in situ in a thin film based on nonstoichiometric adduct and solvent-vacuum drying approaches. Excess MABr with respect to PbBr2 in precursor solution plays a critical role in inhibiting crystal growth of MAPbBr3 , thereby forming nanocrystals and creating type I band alignment with core MAPbBr3 by embedding MAPbBr3 nanocrystals in the unreacted wider band gap MABr. A solvent-vacuum drying process was developed to preserve nanocrystals in the film, which realizes a fast photoluminescence lifetime of 3.9 ns along with negligible trapping processes. Based on a highly luminescent nanocrystalline MAPbBr3 thin film, a highly efficient green LED with a maximum external quantum efficiency of 8.21% and a current efficiency of 34.46 cd/A was demonstrated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app