JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Physiological Responses to Fasting and Estivation for the Three-Toed Amphiuma (Amphiuma tridactylum).

Species of Amphiuma enter a state of subterranean estivation with the drying of their aquatic habitat. Characteristic of amphibian fasting and estivation is an initial depression of metabolism and tissue mass and function with fasting, followed by a more pronounced adaptive decrease in metabolism and tissue function with estivation. We hypothesized that Amphiuma likewise experiences a two-stage set of responses to estivation. Therefore, we examined the physiological responses of the three-toed amphiuma (Amphiuma tridactylum) to fasting and estivation treatments. Recently fed A. tridactylum served as controls for fasting treatments of 1, 3, and 6 mo (in water) and estivation treatments of 3 and 6 mo (buried in dried substrate). After a 1-mo fast, A. tridactylum experienced no further depression of metabolic rate following 3 or 6 mo of fasting or estivation. For all fasting and estivation trials, A. tridactylum maintained blood chemistry homeostasis, with the exception of an increase in blood urea following 6 mo of estivation. Compared with fed controls, the mass of most organs did not vary even after 6 mo of fasting and estivation. Only the small intestine (decreasing) and the full gall bladder (increasing) experienced significant changes in mass with fasting or estivation. The fasting decrease in small intestinal mass was in part due to enterocyte atrophy, which resulted in a decrease in mucosa/submucosa thickness. In contrast to many estivating anurans and the ecologically convergent sirens, A. tridactylum does not surround itself in a cocoon of dried skin or mucus during estivation. The thickness and architecture of their skin remains unchanged even after 6 mo of estivation. Following months of fasting or estivation, individuals still maintain gastric acid production, pancreatic enzyme activity, and intestinal enzyme and transporter activities. Contrary to our hypothesis that A. tridactylum experiences two stages of metabolic depression and tissue downregulation, first with fasting and second with estivation, we observed a relatively modest single-stage response to both. Rather than becoming dormant and engaging in mechanisms to depress metabolism and tissue performance with estivation, A. tridactylum employs an alternative strategy of remaining alert and possibly eating to survive extended periods when their aquatic habitats become dry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app