JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Metabolic Rate of Diploid and Triploid Edible Frog Pelophylax esculentus Correlates Inversely with Cell Size in Tadpoles but Not in Frogs.

In multicellular organisms, cell size may have crucial consequences for basic parameters, such as body size and whole-body metabolic rate (MR). The hypothesis predicts that animals composed of smaller cells (a higher membrane surface-to-cell volume ratio) should have a higher mass-specific MR because a large part of their energy is used to maintain cell membranes and ionic gradients. In this article, we investigated the link between cell size and MR in diploid and triploid tadpoles and froglets of the hybridogenetic frog Pelophylax esculentus. In our previous study, we showed that triploids had significantly larger cells (erythrocytes, hepatocytes, and epidermal cells were measured). Therefore, we hypothesized that triploid tadpoles and froglets would have a lower standard metabolic rate (SMR). Our study demonstrated for the first time two distinct effects of polyploidy/cell size on MR within a single species developing in both aquatic and terrestrial habitats. As we hypothesized, diploid tadpoles had a higher SMR than triploids, whereas in froglets, ploidy did not affect the SMR. We also found that the water temperatures in which tadpoles were reared had no effect on the SMR of froglets after metamorphosis. Based on our results and other reports, we suggest that cell size may have more consequences for whole-body MR in aquatic habitats than in terrestrial habitats because oxygen is less available in water and its availability in relation to oxygen demand decreases with temperature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app