Add like
Add dislike
Add to saved papers

Effects of surface charge of low molecular weight heparin-modified cationic liposomes on drug efficacy and toxicity.

Cationic liposome is a potential nanocarrier to deliver drugs to solid tumor with proven efficiency in targeting tumor tissues. However, the major limitation is their charge-related instability and blood toxicity via intravenous injection. In order to overcome these problems and to maintain tumor targeting potency, we modified the cationic liposomes with low molecular weight heparin (LMWH) to obtain series of liposomes with different surface charges. Both in vitro and in vivo studies including serum stability, blood hemolysis, cellular uptake, cytotoxicity and in vivo biodistribution were evaluated. The results indicated the cationic liposome with surface charge of 5 mV (denoted as LLip-C) had the similar stability in serum and mild hemocytolysis compared with that of anionic liposome (LLip-D), but better cellular uptake owing to electrostatic interaction between cationic liposomes and cell membranes. Furthermore, we prepared curcumin-loaded liposomes to investigate the therapy efficiency. The intracellular distribution of curcumin-loaded LLip-C (Curcumin-LLip-C) was inclined to locate in cytoplasm and nuclei than curcumin-loaded LLip-D (Curcumin-LLip-D). In vitro cytotoxicity of Curcumin-LLip-C also exhibited higher inhibition of tumor cells than that of Curcumin-LLip-D. These results certified that a slightly positive surface charge of nanocarriers could achieve the balance between well antitumor efficiency and mild adverse effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app