Add like
Add dislike
Add to saved papers

Loss of desmoglein 2 promotes tumorigenic behavior in pancreatic cancer cells.

The ability to maintain cell-cell adhesion is crucial for tissue integrity and organization. Accordingly, loss of cohesiveness plays a critical role in cancer invasion and metastasis. Desmosomes are cell junctions providing strong intercellular adhesive strength and dysregulation of desmosomal constituents contributes to cancer progression through altered cell signaling pathways. Here, we focused on the desmosomal adhesion molecules Desmoglein 2 (Dsg2) and Desmocollin 2 (Dsc2), and their contribution to migration and invasion in pancreatic cancer cells. Silencing of Dsg2 but not Dsc2 resulted in loss of cell cohesion and enhanced migration, and invasion of pancreatic adenocarcinoma cells. To identify potential pathways regulated by Dsg2, we performed kinase arrays and detected the activity of ERK and growth factor receptors to be significantly enhanced in Dsg2-deficient cells. Consequently, inhibition of ERK phosphorylation in Dsg2 knockdown cells normalized migration. Loss of Dsg2 resulted in reduced levels of the desmosomal adapter protein and transcriptional regulator Plakoglobin (PG) in an ERK-dependent manner, whereas other desmosomal molecules were not altered. Overexpression of PG rescued enhanced migration induced by silencing of Dsg2. These results identify a novel pro-migratory pathway of pancreatic cancer cells in which loss of Dsg2 reduces the levels of PG via deregulated MAPK signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app