Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Folate-modified, indocyanine green-loaded lipid-polymer hybrid nanoparticles for targeted delivery of cisplatin.

Cisplatin is a potent antitumor drug, which is widely applied in clinical cancer treatment. However, cisplatin can hardly distinguish between healthy tissue and tumor tissue, resulting in serious toxic side effects. Indocyanine green (ICG) is a FDA-approved near-infrared (NIR) fluorescence dye which has been used in photothermal therapy and optically mediated diagnostic, but the application of ICG is limited by its concentration-dependent aggregation, poor aqueous stability in vitro, lack of target specificity and rapid elimination from the body. Herein, to overcome these limitations of cisplatin and ICG, we fabricated folate-modified, cisplatin, ICG-loaded lipid-polymer hybrid nanoparticles (FCINPs) using a single-step sonication method. The FCINPs exhibited well-defined monodispersity, significant stability and excellent NIR penetration ability. The intracellular uptake experiment showed that the targeting efficacy of the FCINPs was more effective in folate receptors (FRs) over-expressing MCF-7 cells than FRs negative A549 cells. In addition, compared with chemo or photothermal treatment alone, the treatment of FCINPs in combination with 808 nm NIR laser irradiation can significantly induce the apoptosis and necrosis of MCF-7 cells. These findings indicated that the FCINPs would be a promising nanosized drug formulation for tumor-targeted therapy in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app