JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Joannsin, a novel Kunitz-type FXa inhibitor from the venom of Prospirobolus joannsi.

The repugnatorial glands of millipedes release various defensive chemical secretions. Although varieties of such defensive secretions have been studied, none of them is protein or peptide. Herein, a novel factor Xa (FXa) inhibitor named joannsin was identified and characterised from repugnatorial glands of Prospirobolus joannsi. Joannsin is composed of 72 amino acid residues including six cysteines, which form three intra-molecular disulfide bridges. It is a member of Kunitz-type protease inhibitor family, members of which are also found in the secretory glands of other arthropods. Recombinant joannsin exhibited remarkable inhibitory activity against trypsin and FXa with a Ki of 182.7 ± 14.6 and 29.5 ± 4.7 nM, respectively. Joannsin showed strong anti-thrombosis functions in vitro and in vivo. Joannsin is the first peptide component in millipede repugnatorial glands to be identified and is a potential candidate and/or template for the development of anti-thrombotic agents. These results also indicated that there is Kunitz-type protease inhibitor toxin in millipede repugnatorial glands as in other arthropods secretory glands.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app