JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Borazino-Doped Polyphenylenes.

The divergent synthesis of two series of borazino-doped polyphenylenes, in which one or more aryl units are replaced by borazine rings, is reported for the first time, taking advantage of the decarbonylative [4 + 2] Diels-Alder cycloaddition reaction between ethynyl and tetraphenylcyclopentadienone derivatives. Because of the possibility of functionalizing the borazine core with different groups on the aryl substituents at the N and B atoms of the borazino core, we have prepared borazino-doped polyphenylenes featuring different doping dosages and orientations. To achieve this, two molecular modules were prepared: a core and a branching unit. Depending on the chemical natures of the central aromatic module and the reactive group, each covalent combination of the modules yields one exclusive doping pattern. By means of this approach, three- and hexa-branched hybrid polyphenylenes featuring controlled orientations and dosages of the doping B3 N3 rings have been prepared. Detailed photophysical investigations showed that as the doping dosage is increased, the strong luminescent signal is progressively reduced. This suggests that the presence of the B3 N3 rings engages additional deactivation pathways, possibly involving excited states with an increasing charge-separated character that are restricted in the full-carbon analogues. Notably, a strong effect of the orientational doping on the fluorescence quantum yield was observed for those hybrid polyphenylene structures featuring low doping dosages. Finally, we showed that Cu-catalyzed 1,3-dipolar cycloaddition is also chemically compatible with the BN core, further endorsing the inorganic benzene as a versatile aromatic scaffold for engineering of molecular materials with tailored and exploitable optoelectronic properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app