Add like
Add dislike
Add to saved papers

Transmission of HBV DNA Mediated by Ceramide-Triggered Extracellular Vesicles.

BACKGROUND & AIMS: An extracellular vesicle (EV) is a nanovesicle that shuttles proteins, nucleic acids, and lipids, thereby influencing cell behavior. A recent crop of reports have shown that EVs are involved in infectious biology, influencing host immunity and playing a role in the viral life cycle. In the present work, we investigated the EV-mediated transmission of hepatitis B virus (HBV) infection.

METHODS: We investigated the EV-mediated transmission of HBV infection by using a HBV infectious culture system that uses primary human hepatocytes derived from humanized chimeric mice (PXB-cells). Purified EVs were isolated by ultracentrifugation. To analyze the EVs and virions, we used stimulated emission depletion microscopy.

RESULTS: Purified EVs from HBV-infected PXB-cells were shown to contain HBV DNA and to be capable of transmitting HBV DNA to naive PXB-cells. These HBV-DNA-transmitting EVs were shown to be generated through a ceramide-triggered EV production pathway. Furthermore, we showed that these HBV-DNA-transmitting EVs were resistant to antibody neutralization; stimulated emission depletion microscopy showed that EVs lacked hepatitis B surface antigen, the target of neutralizing antibodies.

CONCLUSIONS: These findings suggest that EVs harbor a DNA cargo capable of transmitting viral DNA into hepatocytes during HBV infection, representing an additional antibody-neutralization-resistant route of HBV infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app