CLINICAL TRIAL
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Relationship Between Changes in the Temporal Dynamics of the Blood-Oxygen-Level-Dependent Signal and Hypoperfusion in Acute Ischemic Stroke.

BACKGROUND AND PURPOSE: Changes in the blood-oxygen-level-dependent (BOLD) signal provide a noninvasive measure of blood flow, but a detailed comparison with established perfusion parameters in acute stroke is lacking. We investigated the relationship between BOLD signal temporal delay and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) in stroke patients.

METHODS: In 30 patients with acute (<24 hours) ischemic stroke, we performed Pearson correlation and multiple linear regression between DSC-MRI parameters (time to maximum [Tmax], mean transit time, cerebral blood flow, and cerebral blood volume) and BOLD-based parameters (BOLD delay and coefficient of BOLD variation). Prediction of severe hypoperfusion (Tmax >6 seconds) was assessed using receiver-operator characteristic (ROC) analysis.

RESULTS: Correlation was highest between Tmax and BOLD delay (venous sinus reference; time shift range 7; median r =0.60; interquartile range=0.49-0.71). Coefficient of BOLD variation correlated with cerebral blood volume (median r = 0.37; interquartile range=0.24-0.51). Mean R 2 for predicting BOLD delay by DSC-MRI was 0.54 (SD=0.2) and for predicting coefficient of BOLD variation was 0.37 (SD=0.17). BOLD delay (whole-brain reference, time shift range 3) had an area under the curve of 0.76 for predicting severe hypoperfusion (sensitivity=69.2%; specificity=80%), whereas BOLD delay (venous sinus reference, time shift range 3) had an area under the curve of 0.76 (sensitivity=67.3%; specificity=83.5%).

CONCLUSIONS: BOLD delay is related to macrovascular delay and microvascular hypoperfusion, can identify severely hypoperfused tissue in acute stroke, and is a promising alternative to gadolinium contrast agent-based perfusion assessment in acute stroke.

CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT00715533 and NCT02077582.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app