JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

A modelling approach to the dynamics of gait initiation.

Gait initiation is an integral and complex part of human locomotion. In this paper, we present a novel compliant-leg model-based approach to understanding the key phases of initiation, the nature of the effective forces involved in initiation, and the importance of the anticipatory postural adjustments (APAs). The results demonstrate that in the presence of APAs, we observe a change in the characteristic of forcing required for initiation, and the energetic cost of gait initiation is also reduced by approximately 58%. APAs also result in biologically relevant leg landing angles and trajectories of motion. Furthermore, we find that a sublinear functional relationship with the velocity error from steady state predicts the required force, consistent with an open loop control law basis for gait initiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app