Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Effect of diuretics on renal tubular transport of calcium and magnesium.

Calcium (Ca2+ ) and Magnesium (Mg2+ ) reabsorption along the renal tubule is dependent on distinct trans- and paracellular pathways. Our understanding of the molecular machinery involved is increasing. Ca2+ and Mg2+ reclamation in kidney is dependent on a diverse array of proteins, which are important for both forming divalent cation-permeable pores and channels, but also for generating the necessary driving forces for Ca2+ and Mg2+ transport. Alterations in these molecular constituents can have profound effects on tubular Ca2+ and Mg2+ handling. Diuretics are used to treat a large range of clinical conditions, but most commonly for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate sodium (Na+ ) transport, but also indirectly affect renal Ca2+ and Mg2+ handling, i.e., by establishing a prerequisite electrochemical gradient. It is therefore not surprising that substantial alterations in divalent cation handling can be observed following diuretic treatment. The effects of diuretics on renal Ca2+ and Mg2+ handling are reviewed in the context of the present understanding of basal molecular mechanisms of Ca2+ and Mg2+ transport. Acetazolamide, osmotic diuretics, Na+ /H+ exchanger (NHE3) inhibitors, and antidiabetic Na+ /glucose cotransporter type 2 (SGLT) blocking compounds, target the proximal tubule, where paracellular Ca2+ transport predominates. Loop diuretics and renal outer medullary K+ (ROMK) inhibitors block thick ascending limb transport, a segment with significant paracellular Ca2+ and Mg2+ transport. Thiazides target the distal convoluted tubule; however, their effect on divalent cation transport is not limited to that segment. Finally, potassium-sparing diuretics, which inhibit electrogenic Na+ transport at distal sites, can also affect divalent cation transport.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app