Add like
Add dislike
Add to saved papers

An improved, high-efficiency assay for assessing serum anticholinergic activity using cultured cells stably expressing M1 receptors.

Assessments of total anticholinergic activity (SAA) in serum are of considerable interest for its potential involvement in cognitive impairment associated with polydrug states in the elderly and other populations. Such estimations have been based on the displacement of radioligand binding in rat brain tissues. The validity of such measurements has been questioned, as a potentially distorting effect of large serum proteins was identified. We sought to develop a modified assay that would be more efficient and free of this potential confound. Cultured CHO cells stably expressing M1 receptors M1WT3 were used. Binding of 3 H-radioligands was conducted in 96-well plates and tested in serum containing known amounts of anticholinergic medications. Effects of endogenous serum proteins were assessed by pre-assay filtration and also by deproteinization with perchloric acid (PCA). Binding of [3 H]quinuclidinyl benzilate ([3 H]QNB) or [3 H]N-methyl-scopolamine ([3 H]NMS) to M1WT3 cells proved reliable and equally sensitive to varying concentrations of anticholinergic agents. In agreement with previous findings (Cox, Kwatra, Shetty, & Kwatra, 2009), filtration of proteins heavier than 50kDa essentially reduced SAA values to zero. In contrast, PCA preserved more than 70% of the binding seen untreated cell membranes. Cell-based assays also showed significant signal increases compared to the conventional rat brain-based protocol. Further advantages of the cell-based protocol described here include increased sensitivity and reliability, smaller amounts of radioligand needed, and higher throughput. PCA pretreatment eliminates potential artifacts attributable to serum proteins. This step, together with improvements in efficiency, should contribute significantly to the usefulness of the assay.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app