Add like
Add dislike
Add to saved papers

Oxygen exposure effects on the dechlorinating activities of a trichloroethene-dechlorination microbial consortium.

Bioresource Technology 2017 September
The aim of this work was to study the effects of the presence of oxygen on the dechlorination of trichloroethene by a microbial consortium containing D. mccartyi. The 16S rRNA and reductive dechlorination genes of the functional bacteria and the non-dechlorinators were monitored. Exposing the consortium to oxygen altered the overall biotransformation rate of the dechlorination process, biotransformation processes prolonged with oxygen concentrations changing from 0 to 7.2mg/L, however, trichloroethylene was eventually dechlorinated to ethene. The qPCR analyses revealed that the D. mccartyi strains containing the tceA gene were less sensitive to exposure to oxygen than were the D. mccartyi strains containing the vcrA gene. High-throughput sequencing by Illumina MiSeq indicated that the non-dechlorinating organisms were probably crucial to scavenge the oxygen to protect D. mccartyi from being damaged.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app