Add like
Add dislike
Add to saved papers

Molecular and Structural Characterization of the Tegumental 20.6-kDa Protein in Clonorchis sinensis as a Potential Druggable Target.

The tegument, representing the membrane-bound outer surface of platyhelminth parasites, plays an important role for the regulation of the host immune response and parasite survival. A comprehensive understanding of tegumental proteins can provide drug candidates for use against helminth-associated diseases, such as clonorchiasis caused by the liver fluke Clonorchis sinensis. However, little is known regarding the physicochemical properties of C. sinensis teguments. In this study, a novel 20.6-kDa tegumental protein of the C. sinensis adult worm (CsTegu20.6) was identified and characterized by molecular and in silico methods. The complete coding sequence of 525 bp was derived from cDNA clones and encodes a protein of 175 amino acids. Homology search using BLASTX showed CsTegu20.6 identity ranging from 29% to 39% with previously-known tegumental proteins in C. sinensis. Domain analysis indicated the presence of a calcium-binding EF-hand domain containing a basic helix-loop-helix structure and a dynein light chain domain exhibiting a ferredoxin fold. We used a modified method to obtain the accurate tertiary structure of the CsTegu20.6 protein because of the unavailability of appropriate templates. The CsTegu20.6 protein sequence was split into two domains based on the disordered region, and then, the structure of each domain was modeled using I-TASSER. A final full-length structure was obtained by combining two structures and refining the whole structure. A refined CsTegu20.6 structure was used to identify a potential CsTegu20.6 inhibitor based on protein structure-compound interaction analysis. The recombinant proteins were expressed in Escherichia coli and purified by nickel-nitrilotriacetic acid affinity chromatography. In C. sinensis, CsTegu20.6 mRNAs were abundant in adult and metacercariae, but not in the egg. Immunohistochemistry revealed that CsTegu20.6 localized to the surface of the tegument in the adult fluke. Collectively, our results contribute to a better understanding of the structural and functional characteristics of CsTegu20.6 and homologs of flukes. One compound is proposed as a putative inhibitor of CsTegu20.6 to facilitate further studies for anthelmintics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app