Add like
Add dislike
Add to saved papers

A Urea Potentiometric Biosensor Based on a Thiophene Copolymer.

Biosensors 2017 March 4
A potentiometric enzyme biosensor is a convenient detector for quantification of urea concentrations in industrial processes, or for monitoring patients with diabetes, kidney damage or liver malfunction. In this work, poly(3-hexylthiophene-co-3-thiopheneacetic acid) (P(3HT-co-3TAA)) was chemically synthesized, characterized and spin-coated onto conductive indium tin oxide (ITO) glass electrodes. Urease (Urs) was covalently attached to the smooth surface of this copolymer via carbodiimide coupling. The electrochemical behavior and stability of the modified Urs/P(3HT-co-3TAA)/ITO glass electrode were investigated by cyclic voltammetry, and the bound enzyme activity was confirmed by spectrophotometry. Potentiometric response studies indicated that this electrode could determine the concentration of urea in aqueous solutions, with a quasi-Nernstian response up to about 5 mM. No attempt was made to optimize the response speed; full equilibration occurred after 10 min, but the half-time for response was typically <1 min.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app