Add like
Add dislike
Add to saved papers

Enhanced ovalbumin stability at oil-water interface by phosphorylation and identification of phosphorylation site using MALDI-TOF mass spectrometry.

To improve the interfacial properties, a phosphorylation modification of OVA was performed through dry-heating at three different pH values (5.0, 7.0 and 9.0) in the presence of sodium tripolyphosphate. X-ray photoelectron and Raman spectroscopies confirmed that phosphate groups were successfully grafted onto the ovalbumin backbone through covalent interaction to form OP bond. Additionally, 23, 21 and 18 phosphorylation sites were identified in the OVA that had been phosphorylated at pH 5.0, 7.0 and 9.0 (P-OVA5, P-OVA7 and P-OVA9) respectively by MALDI-TOF mass spectroscopy. More phosphorylated peptides and possible phosphorylation sites were found here than in previous studies with the reaction time reduced to 12h. As a result, the iso-electric point (pI) of P-OVA shifted to lower pH, improving the stability of the P-OVA-included system over a wider pH range. The dynamic interfacial tension, which depends on the phosphorylation-induced conformational change, was explored by Fourier-transform Raman and circular dichroism spectroscopies, and the equilibrium interfacial tension decreased from 17.359mNm(-1) for natural OVA (N-OVA) to 15.969mNm(-1) for P-OVA9. Furthermore, P-OVA was applied to O/W emulsions, resulting in a narrower size distribution with a smaller particle size in P-OVA-stabilized emulsions than in N-OVA-stabilized emulsions. The increase rate of mean particle diameter after 60-min storage decreased from 72.37% for N-OVA to 7.97% for P-OVA5, implying a significant improvement of emulsion stability by preventing aggregation and coalescence. The results from this work demonstrated that the natural biopolymer can be applied to O/W emulsions by enhancing interfacial properties with phosphorylation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app