Add like
Add dislike
Add to saved papers

100-fold improvement in carrier drift mobilities in alkanephosphonate-passivated monocrystalline TiO 2 nanowire arrays.

Nanotechnology 2017 April 8
Single crystal rutile titania nanowires grown by solvothermal synthesis are actively being researched for use as electron transporting scaffolds in perovskite solar cells, in low detection limit ultraviolet photodetectors, in photoelectrochemical water-splitting, and in chemiresistive and electrochemical sensing. The electron drift mobility (μ n ) in solution-grown TiO2 nanowires is very low due to a high density of deep traps, and reduces performance in optoelectronic devices. In this study, the effects of molecular passivation of the nanowire surface by octadecylphosphonic acid (ODPA), on carrier transport in TiO2 nanowire ensembles, were investigated using transient space charge limited current measurements. Infrared spectroscopy indicated the formation of a highly ordered phosphonate monolayer with a high likelihood of bidentate binding of ODPA to the rutile surface. We report the hole drift mobility (μ p ) for the first time in unpassivated solvothermal rutile nanowires to be 8.2 × 10-5 cm2 V-1 s-1 and the use of ODPA passivation resulted in μ p improving by nearly two orders of magnitude to 7.1 × 10-3 cm2 V-1 s-1 . Likewise, ODPA passivation produced between a 2 and 3 order of magnitude improvement in μ n from ∼10-5 -10-6 cm2 V-1 s-1 to ∼10-3 cm2 V-1 s-1 . The bias dependence of the post-transit photocurrent decays in ODPA-passivated nanowires indicated that minority carriers were lost to trapping and/or monomolecular recombination for small values of bias (<5 V). Bimolecular recombination was indicated to be the dominant recombination mechanism at higher bias values.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app