Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Pediatric Brain: No Increased Signal Intensity in the Dentate Nucleus on Unenhanced T1-weighted MR Images after Consecutive Exposure to a Macrocyclic Gadolinium-based Contrast Agent.

Radiology 2017 June
Purpose To determine the effect of at least five serial injections of the macrocyclic gadolinium-based contrast agent (GBCA) gadoterate meglumine on the signal intensity (SI) of the dentate nucleus (DN) of the pediatric brain on nonenhanced T1-weighted magnetic resonance (MR) images. Materials and Methods In this retrospective, institutional review board-approved study, 41 pediatric patients (age range, 3-17 years) who were imaged in at least five consecutive 1.5-T MR examinations with the exclusive use of gadoterate meglumine (plus a final additional nonenhanced MR imaging examination) were evaluated. SI ratio differences between the first and last MR examination were calculated for DN-to-pons and DN-to-middle cerebellar peduncle (MCP) ratios in a region-of-interest-based analysis, and one-sample t tests were used to examine if the SI ratio differences differed from 0. Bayes factors were calculated to quantify the strength of evidence for each test. Results Patients underwent a mean of 8.6 ± 3.9 GBCA administrations (mean accumulated dose, 32.07 mmol ± 17.62, with an average of 16.7 weeks ± 7.9 between every administration). Both ratio differences did not differ significantly from 0 (DN-to-pons ratio: -0.0012 ± 0.0101, P = .436; DN-to-MCP ratio: 0.0007 ± 0.0088, P = .604), and one-sided Bayes factors provided substantial evidence against an SI ratio increase (0.10 for DN-to-pons ratio; 0.27 for DN-to-MCP ratio). Conclusion No increase of the SI in the DN was found after a mean of 8.6 serial injections of the macrocyclic GBCA gadoterate meglumine in pediatric patients, confirming previous studies that did not find this effect after serial injections of macrocyclic GBCAs in adults. © RSNA, 2017.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app