Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A pH-Responsive Detachable PEG Shielding Strategy for Gene Delivery System in Cancer Therapy.

Biomacromolecules 2017 April 11
In this study, a pH-responsive detachable polyethylene glycol (PEG) shielding strategy was designed for gene delivery in cancer therapy. Polyethylenimine/DNA complex (PEI/DNA) was in situ shielded by aldehyde group-modified PEG derivatives. The aldehyde groups of PEG could react with the amino groups of PEI by Schiff base reaction. The Schiff base bond was stable in neutral pH but labile in slightly acidic pH, which made the PEG sheddable in tumors. PEG-coated nanoparticles (NPs) had distinct advantages compared to their mPEG counterpart, possessing decreased zeta potential, more compressed size, and enhanced stability. PEG/PEI/DNA NPs showed not only high tumor cell uptake and transfection efficiency in vitro but also efficient accumulation and gene expression in solid tumors in vivo. This pH-responsive detachable PEG shielding system has the potential to be applied to other polycationic nanoparticles that contain amino groups on their surfaces, which will have broad prospects in cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app