Add like
Add dislike
Add to saved papers

Effect of miR-203 expression on myocardial fibrosis.

OBJECTIVE: Cardiovascular disease is one of the diseases threatening human health. Myocardial fibrosis is a major cause of cardiovascular diseases. Studies have shown that over expression of miR-203 can inhibit the fibrosis. Therefore, in this study, the effect of differential expression of miR-203 on fibrosis of cultured mouse cardiomyocytes was investigated.

MATERIALS AND METHODS: Activators and inhibitors of miR-203 were designed according to the sequence of miR-203, synthesized, and transfected into mouse cardiomyocytes to establish activator group, inhibitor group, and control group. The expression levels of fibrosis-related factors including FN, CTGF, and TGF-β1 were measured by Western blot and RT-PCR 24 h and 36 h after transfection.

RESULTS: Over-expression of miR-203 in mouse cardiomyocytes significantly decreased the expression levels of TGF-β1, CTGF, and FN in a time-dependent manner, compared with that in the control group (p <0.05). Inhibition of miR-203 expression in mouse cardiomyocytes significantly increased the expression levels of TGF-β1, CTGF, and FN 36 h after transfection, compared with that in the control group (p < 0.05). No significant differences were seen in the expression levels of TGF-β1, CTGF, and FN 24 h after transfection, compared with that in the control group (p >0.05).

CONCLUSIONS: Over-expression of miR-203 in mouse cardiomyocytes significantly decreased the expression levels of TGF-β1, CTGF, and FN, which might be used as a detection index for prediction of fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app