Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Critical increase in Na-doping facilitates acceptor band movements that yields ~180 meV shallow hole conduction in ZnO bulk crystals.

Scientific Reports 2017 March 9
Stable p-type conduction in ZnO has been a long time obstacle in utilizing its full potential such as in opto-electronic devices. We designed a unique experimental set-up in the laboratory for high Na-doping by thermal diffusion in the bulk ZnO single crystals. SIMS measurement shows that Na concentration increases by 3 orders of magnitude, to ~3 × 1020  cm-3 as doping temperature increases to 1200 °C. Electronic infrared absorption was measured for Na-acceptors. Absorption bands were observed near (0.20-0.24) eV. Absorption bands blue shifted by 0.04 eV when doped at 1200 °C giving rise to shallow acceptor level. NaZn band movements as a function of doping temperature are also seen in Photoluminescence emission (PL), Photoluminescence excitation (PLE) and UV-Vis transmission measurements. Variable temperature Hall measurements show stable p-type conduction with hole binding energy ~0.18 eV in ZnO samples that were Na-doped at 1200 °C.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app