Add like
Add dislike
Add to saved papers

NOESY-WaterControl: a new NOESY sequence for the observation of under-water protein resonances.

Highly selective and efficient water signal suppression is indispensable in biomolecular 2D nuclear Overhauser effect spectroscopy (NOESY) experiments. However, the application of conventional water suppression schemes can cause a significant or complete loss of the biomolecular resonances at and around the water chemical shift (ω2 ). In this study, a new sequence, NOESY-WaterControl, was developed to address this issue. The new sequence was tested on lysozyme and bovine pancreatic trypsin inhibitor (BPTI), demonstrating its efficiency in both water suppression and, more excitingly, preserving water-proximate biomolecular resonances in ω2 . The 2D NOESY maps obtained using the new sequence thus provide more information than the maps obtained with conventional water suppression, thereby lessening the number of experiments needed to complete resonance assignments of biomolecules. The 2D NOESY-WaterControl map of BPTI showed strong bound water and exchangeable proton signals in ω1 but these signals were absent in ω2 , indicating the possibility of using the new sequence to discriminate bound water and exchangeable proton resonances from non-labile proton resonances with similar chemical shifts to water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app