Add like
Add dislike
Add to saved papers

Protective and Heat Retention Effects of Thermo-sensitive Basement Membrane Extract (Matrigel) in Hepatic Radiofrequency Ablation in an Experimental Animal Study.

PURPOSE: To evaluate the protective effect of using thermo-sensitive basement membrane extract (Matrigel) for hydrodissection to minimize thermal injury to nearby structures and to evaluate its heat sink effect on the ablation zone in radiofrequency ablation (RFA) of the liver.

MATERIALS AND METHODS: First, the viscosity profile and heat sink effect of Matrigel were assessed during RFA in vitro and ex vivo. Fresh pig liver tissue was used, and the temperature changes in Matrigel and in 5% dextrose in water (D5W) during RFA were recorded. Then, the size of the ablation zone in the peripheral liver after RFA was measured. Second, in an in vivo study, 45 Sprague-Dawley rats were divided into three groups of 15 rats each (Matrigel, D5W and control). In the experimental groups, artificial ascites with 10 ml of Matrigel or D5W were injected using ultrasound guidance prior to RFA. The frequency of thermal injury to the nearby organs was compared among the three groups, with assessments of several locations: near the diaphragm, the abdominal wall and the gastrointestinal (GI) tract. Finally, the biological degradation of Matrigel by ultrasound was evaluated over 60 days.

RESULTS: First, Matrigel produced a greater heat retention (less heat sink) effect than D5W during ex vivo ablation (63 ± 9 vs. 26 ± 6 °C at 1 min on the surface of the liver, P < 0.001). Hepatic ablation zone volume did not differ between the two groups. Second, thermal injury to the nearby structures was found in 14 of 15 cases (93.3%) in the control group, 8 of 15 cases (53.3%) in the D5W group, and 1 of 15 cases (6.7%) in the Matrigel group. Significant differences in the thermal injury rates for nearby structures were detected among the three groups (P < 0.001). The most significant difference in the thermal injury rate was found in locations near the GI tract (P = 0.003). Finally, Matrigel that was injected in vivo was gradually degraded during the following 60 days.

CONCLUSIONS: Using thermo-sensitive Matrigel as a hydrodissection material might help reduce the frequency of collateral thermal injury to nearby structures, especially in locations close to the GI tract, compared to conventional D5W. Additionally, Matrigel did not increase the heat sink effect on the ablation zone during ablation and was degraded over time in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app