Add like
Add dislike
Add to saved papers

Stabilization Improves Theranostic Properties of Lipiodol ® -Based Emulsion During Liver Trans-arterial Chemo-embolization in a VX2 Rabbit Model.

PURPOSE: To demonstrate that stability is a crucial parameter for theranostic properties of Lipiodol® -based emulsions during liver trans-arterial chemo-embolization.

MATERIALS AND METHODS: We compared the theranostic properties of two emulsions made of Lipiodol® and doxorubicin in two successive animal experiments (One VX2 tumour implanted in the left liver lobe of 30 rabbits). Emulsion-1 reproduced one of the most common way of preparation (ratio of oil/water: 1/1), and emulsion-2 was designed to obtain a water-in-oil emulsion with enhanced stability (ratio of oil/water: 3/1, plus an emulsifier). The first animal experiment compared the tumour selectivity of the two emulsions: seven rabbits received left hepatic arterial infusion (HAI) of emulsion-1 and eight received HAI of emulsion-2. 3D-CBCT acquisitions were acquired after HAI of every 0.1 mL to measure the densities' ratios between the tumours and the left liver lobes. The second animal experiment compared the plasmatic and tumour doxorubicin concentrations after HAI of 1.5 mg of doxorubicin administered either alone (n = 3) or in emulsion-1 (n = 6) or in emulsion-2 (n = 6).

RESULTS: Emulsion-2 resulted in densities' ratios between the tumours and the left liver lobes that were significantly higher compared to emulsion-1 (up to 0.4 mL infused). Plasmatic doxorubicin concentrations (at 5 min) were significantly lower after HAI of emulsion-2 (19.0 μg/L) than emulsion-1 (275.3 μg/L, p < 0.01) and doxorubicin alone (412.0 μg/L, p < 0.001), and tumour doxorubicin concentration (day-1) was significantly higher after HAI of emulsion-2 (20,957 ng/g) than in emulsion-1 (8093 ng/g, p < 0.05) and doxorubicin alone (2221 ng/g, p < 0.01).

CONCLUSION: Stabilization of doxorubicin in a water-in-oil Lipiodol® -based emulsion results in better theranostic properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app