Add like
Add dislike
Add to saved papers

Expression of AKT1 along with AKT2 in granulosa-lutein cells of hyperandrogenic PCOS patients.

PURPOSE: AKTs have a pivotal role in the granulosa-lutein cell (GC) proliferation and folliculogenesis, and there is a reciprocal feedback between AKT with androgen. Therefore, we aimed to evaluate the role of AKTs in GCs of hyperandrogenic (+HA) PCOS cases.

METHOD: There were three groups: control, +HA PCOS and -HA (non-hyperandrogenic) PCOS. All groups were subjected to GnRH antagonist protocol for stimulation of ovulation. Follicular fluid was aspirated from large follicles, and GCs were isolated using cell strainer method. AKT1, AKT2, AKT3, and androgen receptor (AR) mRNA expressions were analyzed with quantitative real-time PCR (qRT-PCR), and total-AKT and p-AKT (Ser(473) & Thr(308)) were investigated using western blotting.

RESULTS: There were high levels of AKT1, AKT2, and AR mRNA expressions and high levels of p-AKT protein expression in the +HA PCOS group (p ≤ 0.05). There was a direct positive correlation between free testosterone (FT) and total testosterone (TT) with the levels of AKT1, AKT2, and p-AKT (Ser(473)), and also between FT with the levels of AR.

CONCLUSION: High expressions of AKT1 and AKT2 through possible relation with androgen may cause GCs dysfunction in the +HA PCOS patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app