Add like
Add dislike
Add to saved papers

Long non-coding RNA UCA1 regulates the expression of Snail2 by miR-203 to promote hepatocellular carcinoma progression.

PURPOSE: Long non-coding RNA (LncRNA) urothelial carcinoma-associated 1 (UCA1) is reported to be dysregulated in hepatocellular carcinoma (HCC) progression. However, the functions of UCA1 in HCC still need further study. The aim is to detect the role of UCA1 involving in HCC cells proliferation and invasion, and epithelial-mesenchymal transition (EMT).

METHODS: The quantitative real-time PCR was used to detect the UCA1 and miR-203 expression levels in 60 cases' HCC tissues and adjacent normal tissues. Western blotting analysis was performed to detect the EMT markers E-cadherin, Vimentin and transcription factor Snail1, Snail2 expression. Luciferase reporter assay, RNA immunoprecipitation (RIP) and pull-down assays were used to evaluate whether miR-203 was a target of UCA1.

RESULTS: Our results showed that UCA1 was markedly upregulated in HCC tissues and higher UCA1 expression in HCC was positively associated with tumor size, vascular invasion and American Joint Committee on Cancer (AJCC) stage (P < 0.05). Furthermore, gain-of-function and loss-of-function analysis showed that UCA1 knockdown inhibited HCC cells proliferation and invasion in vitro and xenograft tumour growth in vivo. Moreover, UCA1 overexpression promoted cell epithelial-mesenchymal transition (EMT) in HCC via effectively sponging to miR-203 and thereby activating the expression of transcription factor Snail2.

CONCLUSIONS: Our results identified that UCA1/miR-203/Snail2 pathway might involve in HCC progression. Inhibition of UCA1 acted as a promising therapeutic target for HCC patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app