Add like
Add dislike
Add to saved papers

Effective Contact Potential of Thin Film Metal-Insulator Nanostructures and Its Role in Self-Powered Nanofilm X-ray Sensors.

We studied the effective contact potential difference (ECPD) of thin film nanostructures and its role in self-powered X-ray sensors, which use the high-energy current detection scheme. We compared the response to kilovoltage X-rays of several nanostructures made of disparate combinations of conductors (Al, Cu, Ta, ITO) and oxides (SiO2 , Ta2 O5 , Al2 O3 ). We measured current-voltage curves in parallel-plate configuration separated by an air gap and determined three characteristic parameters: current at zero voltage bias I0 , the voltage offset for zero current ECPD, and saturation current Isat . We found that the metals' ECPD values measured with our technique were higher than the CPD values measured with photoelectron spectroscopy in situ, i.e., no air contact. These differences are related to natural oxidization and to the presence of photo-/Auger-electron current leaking from the high-Z toward the low-Z electrode, as suggested by additional experiments carried out in vacuum. Further, the deposition of the 40-500 nm oxide layer on the surface of metallic substrates strongly affects their contact potential. This technique exploits ionization and charge carrier transport in both solid insulators and in air, and it opens the possibility of measuring the ECPD between metals separated by a solid insulator in a metal-insulator-metal (MIM) configuration. Additionally, we demonstrated that certain configurations of MIM structures are suitable for X-ray detection in self-powered mode.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app