Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Classification of squat quality with inertial measurement units in the single leg squat mobility test.

Many assessment and diagnosis protocols in rehabilitation, orthopedic surgery and sports medicine rely on mobility tests like the Single Leg Squat (SLS). In this study, a set of three Inertial Measurement Units (IMUs) were used to estimate the joint pose during SLS and to classify the SLS as poor, moderate or good. An Extended Kalman Filter pose estimation method was used to estimate kinematic joint variables, and time domain features were generated based on these variables. The most important features were then selected and used to train Support Vector Machine (SVM), Linear Multinomial Logistic Regression, and Decision Tree classifiers. The results of feature selection highlight the importance of the ankle internal rotation (IR) angle in classifying SLS. Classification results on a human motion dataset achieved an accuracy of 98% for the two-class problem using SVM, while for 3 class classification, the maximum accuracy was 73% using Decision Tree.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app