Add like
Add dislike
Add to saved papers

Feature domain-specific movement intention detection for stroke rehabilitation with brain-computer interfaces.

Brain-computer interface (BCI) driven electrical stimulation has been proposed for neuromodulation for stroke rehabilitation by pairing intentions to move with somatosensory feedback from electrical stimulation. Movement intentions have been detected in several studies using different techniques, with temporal and spectral features being the most common. A few studies have compared temporal and spectral features, but conflicting results have been reported. In this study, the aim was to investigate if complexity measures can be used for movement intention detection and to compare the detection performance based on features extracted from three different domains (time, frequency and complexity) from single-trial EEG. Two data sets were used where four different isometric palmar grasps or dorsiflexions were performed while continuous EEG was recorded. 39 healthy subjects performed or imagined these movements and 11 stroke patients attempted to perform the movements. The EEG was pre-processed and divided into two epoch classes: Background EEG (2 s) and movement intention (2 s). To obtain an estimated detection performance, temporal, spectral and complexity features were extracted and classified (linear discriminant analysis) after the feature vector was reduced using sequential forward selection. The results show that accuracies between 82-87% and 74-80% are obtained for foot and hand movements, respectively. The temporal feature domain was the most dominant for foot movement intention detection, while the spectral features contributed more to the hand movement detection. The complexity features could be used to detect movement intentions, but the performance was much lower compared to temporal and spectral features.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app