Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inertial sensor based gait analysis discriminates subjects with and without visual impairment caused by simulated macular degeneration.

Macular degeneration is the third leading cause of blindness worldwide and the leading cause of blindness in the developing world. The analysis of gait parameters can be used to assess the influence of macular degeneration on gait. This study examines the effect of macular degeneration on gait using inertial sensor based 3D spatio-temporal gait parameters. We acquired gait data from 21 young and healthy subjects during a 40 m obstacle walk. All subjects had to perform the gait trial with and without macular degeneration simulation glasses. The order of starting with or without glasses alternated between each subject in order to test for training effects. Multiple 3D spatio-temporal gait parameters were calculated for the normal vision as well as the impaired vision groups. The parameters trial time, stride time, stride time coefficient of variation (CV), stance time, stance time CV, stride length, cadence, gait velocity and angle at toe off showed statistically significant differences between the two groups. Training effects were visible for the trials which started without vision impairment. Inter-group differences in the gait pattern occurred due to an increased sense of insecurity related with the loss of visual acuity from the simulation glasses. In summary, we showed that 3D spatio-temporal gait parameters derived from inertial sensor data are viable to detect differences in the gait pattern of subjects with and without a macular degeneration simulation. We believe that this study provides the basis for an in-depth analysis regarding the impact of macular degeneration on gait.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app