Add like
Add dislike
Add to saved papers

A probabilistic framework based on SLIC-superpixel and Gaussian processes for segmenting nerves in ultrasound images.

We deal with an important problem in the field of anesthesiology known as automatic segmentation of nerve structures depicted in ultrasound images. This is important to aid the experts in anesthesiology, in order to carry out Peripheral Nerve Blocking (PNB). Ultrasound imaging has gained recent interest for performing PNB procedures since it offers a non-invasive visualization of the nerve and the anatomical structures around it. However, the location of these nerves in ultrasound images is a difficult task for the specialist due to the artifacts (i.e. speckle noise) that affect the intelligibility of a given image. In this paper, we present a probabilistic approach based on Simple Linear Iterative Clustering (SLIC-superpixels) and Gaussian processes for automatic segmentation of peripheral nerves. First, we use Graph cuts segmentation to define a region of interest (ROI). Such a ROI is divided into several correlated regions using SLIC-superpixels, then, a nonlinear Wavelet transform is applied as feature extraction stage. Finally, we use a classification scheme based on Gaussian Processes in order to predict the label of each parametrized superpixel (the label can be "nerve" or "background"). The accuracy of the proposed method is measured in terms of the Dice coefficient. Results obtained show performances with a Dice coefficient of 0.6524±0.0085 which brings accurate performances in nerve segmentation processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app