Add like
Add dislike
Add to saved papers

Learning approaches to improve prediction of drug sensitivity in breast cancer patients.

Predicting drug response to cancer disease is an important problem in modern clinical oncology that attracted increasing recent attention from various domains such as computational biology, machine learning, and data mining. Cancer patients respond differently to each cancer therapy owing to disease diversity, genetic factors, and environmental causes. Thus, oncologists aim to identify the effective therapies for cancer patients and avoid adverse drug reactions in patients. By predicting the drug response to cancer, oncologists gain full understanding of the effective treatments on each patient, which leads to better personalized treatment. In this paper, we present three learning approaches to improve the prediction of breast cancer patients' response to chemotherapy drug: the instance selection approach, the oversampling approach, and the hybrid approach. We evaluate the performance of our approaches and compare them against the baseline approach using the Area Under the ROC Curve (AUC) on clinical trial data, in addition to testing the stability of the approaches. Our experimental results show the stability of our approaches giving the highest AUC with statistical significance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app